Complex Numbers
|
07-04-2016, 05:33 PM
Post: #1
|
|||
|
|||
Complex Numbers
Suppose that$\,\;z,\,w\in\mathbb{C},\;|z|\le 1\ge |w|,\;z\bar{w}\ne 1.\;$
Prove that $\left|\dfrac{z-w}{1-\bar{z}w}\right|\le 1$ and determine when equality holds. |
|||
07-04-2016, 05:48 PM
Post: #2
|
|||
|
|||
Sol.
$\because\;\;|1-z\bar{w}|^2 -|z-w|^2$
$\qquad = 1+|z|^2|w|^2-2\text{re}(z\bar{w})-|z|^2-|w|^2+2\text{Re}(z\bar{w})$ $\qquad =(1-|z|^2)(1-|w|^2)\ge 0$ $\therefore \;\;\left|\dfrac{z-w}{1-\bar{z}w}\right|\le 1.\quad$Equality holds iff $(|z|=1)\vee(|w|=1)$ |
|||
« Next Oldest | Next Newest »
|