Power of $(\sqrt{2} +1)$ and floor function
|
01-07-2011, 07:24 PM
Post: #1
|
|||
|
|||
Power of $(\sqrt{2} +1)$ and floor function
Prove that $\lfloor (\sqrt{2} + 1)^{2n} \rfloor + 1 - (\sqrt{2} + 1)^{2n} \geq \frac{1}{2} $ and $ (\sqrt{2} + 1)^{2n-1} - \lfloor (\sqrt{2} + 1)^{2n-1} \rfloor \leq \frac{1}{2} , \forall n \in \mathbb{N} $
|
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Power of $(\sqrt{2} +1)$ and floor function - elim - 01-07-2011 07:24 PM
|