Post Reply 
 
Thread Rating:
  • 0 Votes - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Calculus of Variations, Euler-Lagrange Equation and Brachistochrone Problem.
10-18-2017, 12:16 PM
Post: #2
Brachistochrone Problem.
The functional for the brachistochrone problem is $F[y]=\frac{1}{\sqrt{2g}}{\small\displaystyle{\int_0^L}}\sqrt{\small\frac{1+(y')^2}{y​}}$
$f(x,y,p)=\sqrt{\frac{1+p^2}{y}}\;(p=y',q = p').$ Then $f_2=-\frac{\sqrt{1+p^2}}{2y\sqrt{y}},\;f_3=\frac{p}{\sqrt{y(1+p^2)}},$
$\frac{d}{dx}f_3=\underset{\,}{\frac{1}{\sqrt{y(1+p^2)}}}\big(\frac{q}{1+p^2}​-\frac{p^2}{2y}\big),\;y''=-\frac{1+p^2}{2y},\;2yy''+1+(y')^2=0,$
$(y+y(y')^2)'=y'+2yy'y''+(y')^3=y'(2yy''+1+(y')^2) = 0,$
$y+y(y')^2=c,\;(y')^{-1}=\sqrt{\frac{y}{c-y}}=:\tan\beta,\;y=c\sin^2\beta = \frac{c}{2}(1-\cos 2\beta),$
$\frac{dy}{d\beta}=c\sin2\beta,\;\frac{dx}{d\beta}=\frac{dx}{dy}\frac{dy}{d\beta​}=2c\sin^2\beta(=2y)=c(1-\cos 2\beta).\;$Therefore
$(x,y)=\frac{c}{2}(2\beta-\sin 2\beta,1-\cos 2\beta)=r(\theta-\sin\theta,1-cos\theta).\;$ ( A cycloid)
To determine $r$, take $(u,v)=\lambda(\cos t,\sin t)\in\Gamma_y\;(\lambda>0< t< \frac{\pi}{2},\;\Gamma_y\,$is
the graph of curve). Then $\frac{t-\sin t}{1-\cos t}=\frac{u}{v}$ has unique solution $t=T\in (0,2\pi)$
And so $r = \frac{v}{1-\cos T}.\quad\square$
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Brachistochrone Problem. - elim - 10-18-2017 12:16 PM

Forum Jump:


Contact Us | Software Frontier | Return to Top | Return to Content | Lite (Archive) Mode | RSS Syndication