Post Reply 
 
Thread Rating:
  • 0 Votes - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Prove expressions rational
07-26-2010, 03:30 PM
Post: #1
Prove expressions rational
Let \(B_n = \{-1,1\}^n, \; a_k \in \mathbb{Q}, \; k=1,\cdots,n\)
Prove that
(1) \(\sum_{(b_1,\cdots,b_n)\in B_n} (b_1 \sqrt{a_1}+ \cdots +b_n \sqrt{a_n})^{2m} \in \mathbb{Q}, \; m \in \mathbf{N}\)
(2) \(\prod_{(b_1,\cdots,b_n)\in B_n} (b_1 \sqrt{a_1}+ \cdots +b_n \sqrt{a_n}) \in \mathbb{Q}\)
Find all posts by this user
Quote this message in a reply
Post Reply 


Messages In This Thread
Prove expressions rational - elim - 07-26-2010 03:30 PM
RE: Prove expressions rational - elim - 07-27-2010, 09:17 AM

Forum Jump:


Contact Us | Software Frontier | Return to Top | Return to Content | Lite (Archive) Mode | RSS Syndication