Prove expressions rational
|
07-26-2010, 03:30 PM
Post: #1
|
|||
|
|||
Prove expressions rational
Let \(B_n = \{-1,1\}^n, \; a_k \in \mathbb{Q}, \; k=1,\cdots,n\)
Prove that (1) \(\sum_{(b_1,\cdots,b_n)\in B_n} (b_1 \sqrt{a_1}+ \cdots +b_n \sqrt{a_n})^{2m} \in \mathbb{Q}, \; m \in \mathbf{N}\) (2) \(\prod_{(b_1,\cdots,b_n)\in B_n} (b_1 \sqrt{a_1}+ \cdots +b_n \sqrt{a_n}) \in \mathbb{Q}\) |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Prove expressions rational - elim - 07-26-2010 03:30 PM
RE: Prove expressions rational - elim - 07-27-2010, 09:17 AM
|