Post Reply 
 
Thread Rating:
  • 0 Votes - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Decimal number presentation
12-26-2010, 05:43 PM
Post: #1
Decimal number presentation
(1) For $n = \sum_0^{k-1} a_j 10^j, \quad 10 > a_j \in \mathbb{N}, \quad j=\overline{0,k-1}$ define $S(n) = \sum_0^{k-1} a_j$
$\quad\quad$ Prove that $\forall m \in \mathbb{N} \quad \exists n \in \mathbb{N}:\; n+S(n)\in \{m,m+1\}$
Find all posts by this user
Quote this message in a reply
Post Reply 


Forum Jump:


Contact Us | Software Frontier | Return to Top | Return to Content | Lite (Archive) Mode | RSS Syndication