Post Reply 
 
Thread Rating:
  • 0 Votes - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Power of $(\sqrt{2} +1)$ and floor function
01-07-2011, 07:24 PM
Post: #1
Power of $(\sqrt{2} +1)$ and floor function
Prove that $\lfloor (\sqrt{2} + 1)^{2n} \rfloor + 1 - (\sqrt{2} + 1)^{2n} \geq \frac{1}{2} $ and $ (\sqrt{2} + 1)^{2n-1} - \lfloor (\sqrt{2} + 1)^{2n-1} \rfloor \leq \frac{1}{2} , \forall n \in \mathbb{N} $
Find all posts by this user
Quote this message in a reply
Post Reply 


Forum Jump:


Contact Us | Software Frontier | Return to Top | Return to Content | Lite (Archive) Mode | RSS Syndication