Post Reply 
 
Thread Rating:
  • 0 Votes - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Inequalities when (0 < a,b,c and a+b+c=1)
03-14-2010, 01:17 AM
Post: #1
Inequalities when (0 < a,b,c and a+b+c=1)
Show that
\(\displaystyle{\frac {1}{a}+\frac {1}{b}+\frac {1}{c}\ge 9\sqrt{\frac{a^{2}+b^{2}+c^{2}}{ab+bc+ca}}} \quad (a,b,c>0 \quad a+b+c=1)\)

\(\displaystyle{\frac{a}{ab+1}+\frac{b}{bc+1}+\frac{c}{ca+1}\geq\frac{36abc}{13 a b c+1}} \)
Find all posts by this user
Quote this message in a reply
Post Reply 


Forum Jump:


Contact Us | Software Frontier | Return to Top | Return to Content | Lite (Archive) Mode | RSS Syndication