Post Reply 
 
Thread Rating:
  • 0 Votes - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
The sum of the squares of the lengths from a point on unit circle to vertices of its inscribed equilateral triangle
04-21-2010, 05:40 PM
Post: #1
The sum of the squares of the lengths from a point on unit circle to vertices of its inscribed equilateral triangle
[float=right]     [/float]Let \(P\) be a point on the circle \(\odot O\) while \(A,B,C\)
are vertices of \(\triangle ABC\), Find \(\overline{PA}^2+\overline{PB}^2+\overline{PC}^2\)
Find all posts by this user
Quote this message in a reply
12-19-2010, 12:53 AM
Post: #2
Solution: The sum of the squares...
Let $\beta = \frac{\pi}{6}-\theta \in (0,\frac{\Pi}{6})$, then $\overline{PB}=2\cos\beta$. Now by the law cosine we get
$\overline{PA}^2+\overline{PB}^2+\overline{PC}^2 = \displaystyle{3 \overline{PB}^2 + 2(\sqrt{3})^2-2\overline{PB}\sqrt{3}(\cos(\frac{\pi}{6}-\beta)+\cos(\frac{\pi}{6}+\beta))}=$
$\displaystyle{=6+12\cos^2 \beta -8\sqrt{3}\cos^2\beta \cos \frac{\pi}{6}=6}$
Find all posts by this user
Quote this message in a reply
Post Reply 


Forum Jump:


Contact Us | Software Frontier | Return to Top | Return to Content | Lite (Archive) Mode | RSS Syndication