The sum of the squares of the lengths from a point on unit circle to vertices of its inscribed equilateral triangle

04212010, 05:40 PM
Post: #1




The sum of the squares of the lengths from a point on unit circle to vertices of its inscribed equilateral triangle
[float=right]
[/float]Let \(P\) be a point on the circle \(\odot O\) while \(A,B,C\)
are vertices of \(\triangle ABC\), Find \(\overline{PA}^2+\overline{PB}^2+\overline{PC}^2\) 

12192010, 12:53 AM
Post: #2




Solution: The sum of the squares...
Let $\beta = \frac{\pi}{6}\theta \in (0,\frac{\Pi}{6})$, then $\overline{PB}=2\cos\beta$. Now by the law cosine we get
$\overline{PA}^2+\overline{PB}^2+\overline{PC}^2 = \displaystyle{3 \overline{PB}^2 + 2(\sqrt{3})^22\overline{PB}\sqrt{3}(\cos(\frac{\pi}{6}\beta)+\cos(\frac{\pi}{6}+\beta))}=$ $\displaystyle{=6+12\cos^2 \beta 8\sqrt{3}\cos^2\beta \cos \frac{\pi}{6}=6}$ 

« Next Oldest  Next Newest »
