Post Reply 
 
Thread Rating:
  • 0 Votes - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Strange \(a,b,c \in \mathbb{N}^+\) and \(41/42\)
05-03-2010, 05:41 PM
Post: #1
Strange \(a,b,c \in \mathbb{N}^+\) and \(41/42\)
If \(a,b,c \in \mathbb{N}^+,\quad \displaystyle{\frac{1}{a}+\frac{1}{b}+\frac{1}{c} < 1}\), prove that \(\displaystyle{\frac{1}{a}+\frac{1}{b}+\frac{1}{c} < \frac{41}{42}} \)
Find all posts by this user
Quote this message in a reply
05-07-2010, 10:59 AM
Post: #2
RE: Strange \(a,b,c \in \mathbb{N}^+\) and \(41/42\)
Assume that \(a \le b \le c\), with the restriction \(s = 1/a+1/b+1/c <1\), we see that
when \(a \ge 4\), \(s \le 1/4+1/4+1/4 = 3/4 <41/42<1\)
when \(a = 3\), \(s \le 1/3+1/3+1/4 < 41/42\)
when \(a = 2\), \(s \le max(1/2+1/3+1/7,1/2+1/4+1/5)=41/42\)
Find all posts by this user
Quote this message in a reply
Post Reply 


Forum Jump:


Contact Us | Software Frontier | Return to Top | Return to Content | Lite (Archive) Mode | RSS Syndication