Algebra Notes
|
04-02-2015, 04:40 PM
Post: #3
|
|||
|
|||
1.3 Fields of fractions
Let $R$ be a ring, $\Omega_R = \{(r,s)\mid r,s\in R,\;s\ne 0\},$ relation $\sim$ on $\Omega_R$ by $\qquad (r,s)\sim (u,v)\iff rv = su$. Clearly $\sim$ is an equivalence relation, $\qquad\small[r,s] = \{(u,v)\in\Omega: (u,v)\sim (r,s)\}$ as the $\sim$ equivalence class of $\small(r,s)$. 1.3.1 Proposition If $R$ is an integral domain, then $\small F_R = \{[r,s]\mid (r,s)\in\Omega_R\}$ $\qquad$forms the field of fractions of $R$ with ring operations $\qquad [r,s]+[u,v] = [rv +su,\,sv],\;[r,s][u,v] = [ru,sv].$ $\qquad$We may identify $R$ with the subring $\{[r,1]\mid r\in R\}$ of $F_R.\;$ $\qquad$i.e. $\;i: R\to F_R\;(r\mapsto [r,1])$ is the natural monomorphism. 1.3.2 Proposition If $K$ is a field and $\phi: R\underset{\;}{\to} K$ is a monomorphism, $\qquad$then $\phi$ extends uniquely to $F_R$, i.e. there is a unique homomorphism $\qquad\tilde{\phi}:F_R\to K$ such that $\phi = \tilde{\phi}\circ i.$ |
|||
« Next Oldest | Next Newest »
|
Messages In This Thread |
Algebra Notes - elim - 04-02-2015, 11:29 AM
1.2 Prime subfields - elim - 04-02-2015, 02:02 PM
1.3 Fields of fractions - elim - 04-02-2015 04:40 PM
1.4 Polynomial rings - elim - 04-02-2015, 05:11 PM
1.5 Polynomial rings over fields - elim - 04-03-2015, 04:40 PM
RE: Algebra Notes - elim - 04-04-2015, 08:22 PM
2 Field Extensions - elim - 04-06-2015, 07:24 AM
|