Post Reply 
 
Thread Rating:
  • 0 Votes - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Prove that $f_n(x)\rightrightarrows 0$ in $[0,+\infty)$, where $f_n(x)=\frac{x-x^2}{1+x^n}$
03-11-2017, 12:39 AM
Post: #1
Prove that $f_n(x)\rightrightarrows 0$ in $[0,+\infty)$, where $f_n(x)=\frac{x-x^2}{1+x^n}$
($\rightrightarrows$ means uniformly converging) src
Find all posts by this user
Quote this message in a reply
Post Reply 


Forum Jump:


Contact Us | Software Frontier | Return to Top | Return to Content | Lite (Archive) Mode | RSS Syndication