Prove that $f_n(x)\rightrightarrows 0$ in $[0,+\infty)$, where $f_n(x)=\frac{x-x^2}{1+x^n}$
|
03-11-2017, 12:39 AM
Post: #1
|
|||
|
|||
Prove that $f_n(x)\rightrightarrows 0$ in $[0,+\infty)$, where $f_n(x)=\frac{x-x^2}{1+x^n}$
($\rightrightarrows$ means uniformly converging) src
|
|||
« Next Oldest | Next Newest »
|