Theorems and Propositions in Complex Analysis
|
05-18-2020, 10:32 AM
Post: #1
|
|||
|
|||
Theorems and Propositions in Complex Analysis
Notes of Anton Deitmar's Complex Analysis
$\S\;1.\quad\mathbb{C}$ Th.1.6 If$\,S\subset\mathbb{C}\,$is compact and $f\in\mathscr{C}(S,\mathbb{C}),\;$then $(a)\quad f(S)\,$is compact, and $(b)\quad \exists z_1,z_2\in S\,\forall z\in S:\,(|f(z_1)|\le|f(z)|\le|f(z_1)|).$ |
|||
05-18-2020, 11:03 AM
Post: #2
|
|||
|
|||
$\S 2\quad$Holomorphy
Theorem 2.2 (Cauchy-Riemann Equations)
$\quad$Let$\,f=u+iv\,$be complex differentiable at$\;z=x+iy,\;$ $\quad$Then the partial derivatives $u_x,u_y,v_x,v_y\,$all exist and $\quad$satisfy$\,u_x=v_y,\,u_y=-v_x.$ Proposition 2.3 Suppose$\,f\,$is holomprphic and a disk$\,D.$ $(a)\quad f'(D)=\{0\}\implies f\,$is constant. $(b)\quad (|f|\,$is constant$)\implies(f\,$is constant$).$ |
|||
05-18-2020, 08:06 PM
Post: #3
|
|||
|
|||
$\S 3$ Power Series
Lemma 3.0 Suppose $\lim\,\sup\sqrt[n]{|a_n|}=R^{-1}\in(0,\infty),$ Then
$(1)\quad{\small\displaystyle\sum_{n=0}^{\infty}}|a_n||z|^n <\infty\quad(|z|< R);$ $(2)\quad{\small\displaystyle\sum_{n=0}^{\infty}}|a_n||z|^n=\infty\quad(|z|> R).$ Proof. (1) Take$\;\lambda\in(|z|,R),\;\exists M\,\forall n>M:\,(\sqrt[n]{|a_n|}< \lambda^{-1})\small\underset{\,}{\,}$ $\;\;\qquad\qquad\therefore\;\,|a_n z^n|=|({\small\sqrt[n]{|a_n|}\lambda}){\large\frac{z}{\lambda}}|^n <|\large\frac{z}{\lambda}|^n\;(\small n>M)$ $\qquad\quad$(2) Take$\;\eta\in(R,|z|)\,$and then$\,\exists\small M\,$such that$\,\small\sqrt[n]{|a_n|}>\eta^{-1}$ $\qquad\qquad\;\;$and so$\,|a_nz^n|=|(\sqrt[n]{|a_n|}\eta){\large\frac{z}{\eta}}|^n >|\frac{z}{\eta}|^n > 1\;\;\small(n>M)$ |
|||
« Next Oldest | Next Newest »
|