Convergence of a series
|
05-12-2010, 11:25 AM
Post: #1
|
|||
|
|||
Convergence of a series
Suppose \(\left\{b_{k}\right\}\) has the property that:
\(\sum\limits_{k=1}^n \frac{n-k}{n} |b_{k}| \leq M \quad (\forall n)\quad\) Show that \(\sum\limits_{k=1}^\infty |b_{k}| < \infty\) |
|||
05-26-2010, 07:25 AM
Post: #2
|
|||
|
|||
RE: Convergence of a series
\(\sum_{k=1}^n |b_k| \le 2\sum_{k=1}^n \frac{2n-k}{2n}|b_k| \le 2\sum_{k=1}^{2n} \frac{2n-k}{2n} |b_k| \le 2M\)
|
|||
09-04-2012, 07:51 PM
Post: #3
|
|||
|
|||
Other Solutions?
Welcome to other solutions
|
|||
« Next Oldest | Next Newest »
|